

Mars 2020 Onboard Planner: Controlling the Power

Flight Software Workshop 2021

Vincent Wong, Flight Software Developer, Jet Propulsion Laboratory February 9th, 2021

Mission

- Assess ancient habitability
- Search for signs of past life
- Cache rock/soil samples for future return

Mission

- "Baseline Reference Scenario", requirements more aggressive than MSL
- Lots of lessons learned from analyzing MSL operations
 - Challenge in predicting vehicle resource use
 - Time to execute activities
 - Data volume acquired
 - Energy consumed
 - Heating required
 - Productivity impacts due to communication window shifting
 - Loss of sols due to commanding error or unexpected faults
- Motivated development of Onboard Planner

Lange, R. et al. Mars 2020 Surface Mission Performance Modeling: Part 3. Mission Performance Modeling Approach and Results. In 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL. September 2018. https://arc.aiaa.org/doi/10.2514/6.2018-5420

Gaines, D. et al. **Productivity challenges for Mars rover operations: A case study of Mars Science Laboratory operations**. Technical Report D-97908, Jet Propulsion Laboratory. January 2016. https://ai.jpl.nasa.gov/public/papers/gaines-report-rover-Productivity.pdf

Onboard Planner

- A component in flight software
- Input: "plan file" that specifies activities, resources, constraints
- Scheduler: generate a schedule of the activities
- Executive: dispatch each activity at their start time, report their status

Major Productivity Gains

- Using margin: opportunistic acts, expanding acts, early-start
- Flexibly handle issues: late-start, rescheduling
- Onboard management of heating, sleeping

Chi, W. et al. **Embedding a scheduler in execution for a planetary rover**. In *Proceedings of International Conference on Automated Planning and Scheduling (ICAPS 2018)*, Delft, Netherlands, 2018. https://ojs.aaai.org/index.php/ICAPS/article/view/13909/13758

Operational Safety

Operational Model

- Flight system, including architecture and flight software, inherited from MSL
- OBP is developed as an additional capability, not as the core capability

 Utilizes many existing interfaces to: activate sequences, initiate heating, request FSW power-off, query certain spacecraft state

OBP checks

- Scheduling constraints
 - Plan-wide limit on state of charge level, peak power, data volume usage
 - Fixed activities that must be in the schedule (comms, manual shutdown)
- Executive enforcement
 - Verify state conditions with more specialized modules before dispatching
 - E.g. thermal zones at allowable flight temperature
 - Sanity check activity constraints
 - E.g. dependency on another activity satisfied

FSW checks

- In system fault conditions, OBP will cease autonomous operation
 - Return the system to a quiescent, safe state
- Minimum state-of-charge-triggered fault
- Maximum uptime fault
- Lower-level resource arbitration / condition checks

Ground checks

- OBP records data that enables reproduction of each schedule on the ground
- Tunable parameters on OBP
 - Affect scheduling time, resource limits, execution flexibility
- Monte Carlo simulation of schedule and execution during plan design
 - Promote robustness of rescheduling in the face of execution uncertainties
- Explainable scheduling tool
 - Ease plan design, inspire user-trust

Chi, W.; et al. **Optimizing Parameters for Uncertain Execution and Rescheduling Robustness**. In *International Conference on Automated Planning and Scheduling (ICAPS 2019)*, Berkeley, California, USA, July 2019. https://ojs.aaai.org/index.php/ICAPS/article/view/3552/3430 Yelamanchili, A.; et al. **Ground-based Automated Scheduling for the Mars 2020 Rover**. In *Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation for Space, of i-SAIRAS'2020*, Noordwijk, NL, 2020. European Space Agency. https://ai.jpl.nasa.gov/public/documents/papers/M2020 Ground i-SAIRAS2020 camera.pdf

Software Safety

Timeliness

- Separate tasks
 - Scheduler fully event-driven, no hard deadline, lower priority
 - Executive runs in a 1Hz rate group, higher priority
- Scheduler
 - No-backtrack scheduling algorithm
 - Considered set
- Executive
 - Bounded amount of work each cycle

Memory

- Number of activities, number of constraints, etc. capped at the design level
- Entire OBP uses about 3 MB in RAM
- Data stored in non-volatile memory with checksum and boot counter
 - Verified upon read-back

Playing nice

- Scheduling disabled for a period after initialization
 - Allow sensor readings to stabilize
 - Avoid additional load during sensitive period
- Scheduling disabled after shutdown procedure starts
 - Avoid additional load during sensitive period
- OBP cannot request sleeps shorter than a minimum duration
 - Limits frivolous resets
- OBP throttles rescheduling attempts
 - Limits thrashing causing unnecessary load

References

- Benowitz, E. Mars 2020 Rover Onboard Scheduler. In Flight Software Workshop 2016. https://www.youtube.com/watch?v=26v8ZUPpuhk
- Gaines, D. et al. Productivity challenges for Mars rover operations: A case study of Mars Science Laboratory operations.
 Technical Report D-97908, Jet Propulsion Laboratory. January 2016.
 https://ai.jpl.nasa.gov/public/papers/gaines_report_roverProductivity.pdf
- Lange, R. et al. Mars 2020 Surface Mission Performance Modeling: Part 3. Mission Performance Modeling Approach and Results. In 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL. September 2018. https://arc.aiaa.org/doi/10.2514/6.2018-5420
- Chi, W. et al. Embedding a scheduler in execution for a planetary rover. In Proceedings of International Conference on Automated Planning and Scheduling (ICAPS 2018), Delft, Netherlands, 2018. https://ojs.aaai.org/index.php/ICAPS/article/view/13909/13758
- Rabideau, G.; and Benowitz, E. Prototyping an Onboard Scheduler for the Mars 2020 Rover. In International Workshop on Planning and Scheduling for Space (IWPSS 2017), Pittsburgh, PA, June 2017. https://ai.jpl.nasa.gov/public/documents/papers/rabideau_iwpss2017_prototyping.pdf
- Chi, W.; et al. Optimizing Parameters for Uncertain Execution and Rescheduling Robustness. In International Conference on Automated Planning and Scheduling (ICAPS 2019), Berkeley, California, USA, July 2019. https://ojs.aaai.org/index.php/ICAPS/article/view/3552/3430
- Yelamanchili, A.; et al. Ground-based Automated Scheduling for the Mars 2020 Rover. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation for Space, of i-SAIRAS'2020, Noordwijk, NL, 2020. European Space Agency. https://ai.jpl.nasa.gov/public/documents/papers/M2020_Ground_i-SAIRAS2020_camera.pdf

Acknowledgement

- Dan Gaines (FSW)
- Gregg Rabideau (FSW)
- Eddie Benowitz (FSW)
- Stephen Kuhn (Systems)
- Elyse Fosse (Systems)
- James Biehl (Systems)
- Steve Chien (Ground)
- Wayne Chi (Ground)
- Jagriti Agrawal (Ground)
- Amruta Yelamanchili (Ground)

All images from:

https://mars.nasa.gov/mars2020/multimedia/images

jpl.nasa.gov